

COST ACTION CA 17140 NANO2CLINIC

CANCER NANOMEDICINE - FROM THE BENCH TO THE BEDSIDE

Effect of particle shape and size on the interactions of gold nanoparticles with proteins of different glycosylation status

Barbara Pem, mag. pharm.

Institute for Medical Research and Occupational Health, Zagreb, Croatia

Gold and cancer nanomedicine

- Diagnostics, bioimaging and biosensing
- Targeted drug delivery
- Photothermal therapy

 Advantages: inert, biocompatible, tunable properties, easy functionalisation

Protein corona and glycans

Protein corona

- layer of adsorbed proteins on NP surface
- Impacts NP stability and behaviour
- A lot of serum proteins are glycosylated
- Glycosylation patterns change in cancer cells

Sources:

Liu et al. Nanoscale 2013, 5, 1658–1668 Stowell et al. Annu Rev Pathol. 2015, 10, 473-510 Peixoto et al. Front Oncol. 2019; 9: 380. Wan et al. ACS Nano, 2015, 9(2) 2157–2166 (image)

Transferrin

- Iron-binding blood plasma glycoprotein, 679 amino acids, 80 kDa
- Human blood reference range 2.040–3.60 mg/mL
- Used in nanomedicine to increase NP uptake through the bloodbrain barrier or target cancer cells
- 2 N-linked glycans

Sources: https://www.uniprot.org/uniprot Chung. Biochemical education, 1984, 12(4) Li et al. Cancer Lett, 2009, 274(2), 319-26 Wiley et al. PNAS, 2013, 110(21), 8662–8667 https://www.mayocliniclabs.com/test-catalog/Clinical+and+Interpretive/ https://en.wikipedia.org/wiki/File:Protein_TF_PDB_1a8e.png (image)

Aim

- Investigate the difference in binding of human (glycosylated) and recombinant (nonglycosylated) transferrin to gold NPs of different shapes and sizes
- NPs selected: spheres, prisms and rods of different sizes

Methods

- Synthesis Zaragoza, Spain
- Size and morphology determination TEM
- Hydrodynamic diameter measurement DLS
- Zeta potential measurement ELS
- Determination of binding constants fluorescence spectroscopy
- Secondary structure estimation circular dichroism

Characterisation

Characterisation

	diameter
Nanoparticle	by TEM
	(nm)
Cit AuNP spheres small	13
Cit AuNP spheres medium	36
Cit AuNP spheres large	60
GSH-PEG AuNP prisms small	125
GSH-PEG AuNP prisms large	150
Cit-PEG AuNP spheres	36
CTAB-PEG AuNP rods	77
PEG AuNP prisms	197

Fluorescence spectroscopy and binding constants

 Non-glycosylated protein binds more strongly to smaller spherical NPs, while glycosylated form prefers nanoprisms of either size

Secondary structure determination

- Protein-NP interactions result in changes of secondary structure due to changes in hydrogen bonding
- Significantly different patterns of change between glycosylated and non-glycosylated forms for nanoprisms and nanorods

Change in secondary structure of hTRF

🗖 a-helix 🗖 b-sheet 🗖 turn 🗖 other

Conclusions

- Glycans are involved in NP-protein interactions
- Binding of glycosylated proteins to the NP surface is size and shape dependent

Acknowledgements

Institute for Medical Research and Occupational Health, Zagreb, Croatia

Dr Ivana Vinković Vrček Rinea Barbir

Croatian Science Foundation grant IP-2016-06-2436

Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científicas (CSIC) & CIBER-BBN, Zaragoza, Spain

Dr Jesús Martínez de la Fuente Dr Rafael Martín-Rapún

Rafael Ramírez-Jiménez